Ice Dams
We ran across this article about ice dams and thought it was great, so we wanted to share it with you.
Cause of Ice Dams
Ice dams form when melted snow refreezes at roof edges. Anyone who has lived in cold climates has seen ice dams. We’ve enjoyed the sparkling beauty of ice formations built along roof eaves (of other people’s homes). However, most of us don’t stop to understand why these ice bands form until they damage our homes.
Three things are required for an ice dam to form: snow, heat to melt the snow and cold to refreeze the melted snow into solid ice. Ice dams can form when as little as 1 or 2 inches of snow accumulates on a roof – if the roof is poorly insulated and air sealed, and the snowfall is followed by several days of sub-freezing temperatures.
Ice dams develop as snow on the upper part of the roof melts. Water runs down the roof slope under the blanket of snow and refreezes into a band of ice at the roof’s edge creating a “dam”. Additional snow-melt pools against the dam and eventually leaks into the building through the roof or roof trim.
The reason ice-dams form along the roof’s lower edge, usually above the overhang, is straight-forward. The upper roof surface (toward the ridgeline) is at a temperature that is above freezing. And the lower part of the roof surface (along the eaves) is below freezing. The upper roof surface is located directly above the living space. Heat lost from the house warms this section of the roof, melting snow in this area. During periods of sub-freezing temperature the lower regions of the roof deck remain at sub-freezing ambient temperatures. Roof overhangs are not warmed by indoor heat-loss.
Deeper snow and cold temperatures increase the likelihood and size of ice dams. Every inch of snow that accumulates on the roof’s surface insulates the roof deck a little more, trapping more indoor heat beneath the roof deck and warming the roof sheathing.
Damage Caused by Ice Dams
It’s easy to understand that allowing water to leak into your house is a bad idea. Ice dams cause millions of dollars of damage every year. Much of the damage is apparent. Water-stained ceilings, dislodged roof shingles, sagging ice-filled gutters, peeling paint, and damaged plaster are all easily recognized and usually repaired when weather or budgets permit. But other damage is not as obvious and often goes unchecked.
Ice dams usually develop along roof eaves, above the plate line of exterior walls. Heat lost from homes at this point aggravates snow melting and ice-dam development. There are two reasons for increased heat loss at this point: Rafters on most homes sit directly on top of exterior walls leaving a shallow space for insulation between the top of the wall and underside of the roof sheathing. And secondly, builders are not particularly fussy when it comes to air-sealing this point to prevent the movement of warm indoor air up to the underside of the roof surface.
Water often leaks down within the wall frame where it wets wall insulation and causes it to sag leaving uninsulated voids at the top of the wall . Energy dollars are again robbed, but more importantly, moisture gets trapped within the wall cavity between the exterior plywood sheathing and interior vapor barrier. The result: smelly, rotting wall cavities. Structural framing members can decay. Metal fasteners may corrode. Mold and mildew can form on wall surfaces as a result of elevated humidity levels. Exterior and interior paint blisters and peels. And the well-being of allergy-sensitive individuals is compromised.
Peeling of wall paint deserves special attention here because its cause may be difficult to recognize. It is unlikely that wall paint (interior or exterior) will blister or peel when ice dams are visible. Paint peels long after the ice and all signs of a roof leak have evaporated.
Water from ice dams infiltrate wall cavities. It dampens building materials and raises the relative humidity within wall frames. The moisture within the wall cavity eventually wets interior wall coverings and exterior claddings as it tries to escape (as either liquid or vapor). As a result, interior and exterior walls shed its skin of paint.
So the message here is to check your home carefully when ice dams form. Investigate even when there doesn’t appear to be a leak. Look at the underside of the roof sheathing and roof trim to make sure they haven’t gotten wet. Check the insulation for dampness. And when leaks inside your home develop, be prepared. Water penetration often follows pathways difficult to follow. Don’t just patch the roof leak. Make sure that the roof sheathing hasn’t rotted or that other less obvious problems in your ceiling or walls haven’t developed. And then detail a comprehensive plan to fix the damage. But more importantly, solve the problem.
Solutions
The damage caused by ice dams can be controlled in 2 ways: Maintain the entire roof surface at ambient outdoor temperatures or build a roof so that it can’t leak into sensitive building materials if an ice dam forms.
Cold roofs make a lot of sense. Here you let the cold outdoor air work for you. Keep the entire roof as cold as the outdoor air and you solve the ice-dam riddle. Look at the roof of an unheated shed or garage, a pile of lumber or an abandoned home. Ice dams don’t form on these structures because there is no uneven melting and freezing!
For new construction it’s easy. Design the house to include plenty of ceiling insulation, a continuous air barrier separating the living space from the underside of the roof, and an effective roof ventilation system. Insulation retards the conductive flow of heat from the house to the roof surface. An air barrier retards the flow of heated air to the underside of the roof. And a good roof-ventilation system helps keep the roof sheathing cold. In an existing house this approach may be more difficult to follow. Often you are stuck with less than desirable conditions. But let’s look more closely at all the issues that will guide your strategy.
Insulation: Houses in the northern United States should be equipped with ceiling insulation of at least R-38 (about 12 inches of fiberglass or cellulose). The insulation should be continuous and consistently deep. The most notable problem area is located above the exterior wall. Raised-heel trusses or roof-framing details that allow for R-38 above the exterior wall should be used in new construction. In existing structures, where the space between the wall’s top plate and underside of the roof sheathing is restricted, install high R/inch insulating foam (R-6/inch). Be sure to seal the insulation at this point to prevent warm-air leakage from the living space.
Ventilation: A soffit-to-ridge ventilation system is the most effective ventilation scheme you can use to cool roof sheathing. Power vents, turbines, roof vents and gable louvers just aren’t as good. Soffit and ridge vents should run continuously along the length of the house. A baffled ridge vent (like the one sold by Air Vent) is best because it will exhaust attic air regardless of wind direction. The exhaust pressure created by the ridge vent sucks cold make-up air into the attic through the soffit vents. A 2-inch space or “air-chute” should be provided between the top of the insulation and the underside of the roof sheathing in all applications. The in-coming “soffit” air washes the underside of the roof sheathing with a continuous flow of cold air.
CAUTION: Be sure to install insulation baffles above the exterior wall to protect the insulation from the air that blows in through the soffit vents.
Air Leakage: Insulation retards conductive heat loss, but a special effort must be made to block the flow of warm indoor air (convection) into the attic or roof area. Small holes allow significant volumes of warm indoor air to pass into attic spaces. In new construction avoid making penetrations through the ceiling whenever possible. But when you can’t avoid making penetrations or when you need to air-tighten existing homes use urethane spray-foam (in a can), caulking, packed cellulose, or weatherstripping to seal all ceiling leaks like:
- wire penetrations
- plumbing penetrations
- ceiling light fixtures
- attic hatches
- chimneys
- bathroom exhaust fans
- intersection of interior partitions and ceiling
The Also-Rans…
The list of attempted solutions is long. The problem I have with many of these efforts to prevent ice dams is that they don’t deal with the root cause which is heat loss. They merely treat the symptom.
Metal roofs are common in snow country so they must work! Right? Steeply pitched metal roofs in a sense thumb their nose at ice dams. They are slippery enough to shed snow before it causes an ice problem. However, metal roofs are expensive and do not substitute for adequate levels of insulation.
Many people install self-sticking rubberized sheets under roof shingles wherever ponding of water against an ice dam is possible: above the eaves, around chimneys, in valleys, around skylights and around vent stacks. The theory is that if any water leaks through the roof covering, the waterproof underlayment will provide a second line of defense. This band-aid solution is a reasonable alternative for many existing structures where real cures are not possible or cost effective. These products also serve as a redundant layer of protection. Sometimes even well-constructed and designed roofs can have ice dams. Deep snow will act to insulate the roof deck making it warm enough to melt snow over the living area. A redundant layer of protection is helpful here.
You might consider using sheet-metal ice belts if you don’t mind the look of a shiny 2-foot-wide metal strip strung along the edge of your roof. I think, ice/snow belts are reasonable choices for some patch and fix jobs on existing houses. This eaves flashing system tries to do what metal roofing does: shed snow & ice before it causes a problem. It works —- sometimes. The problem with ice belts is they don’t work well. Often, a secondary ice dam develops on the roof just above the top edge of the metal strip.
Contrary to popular belief, gutters do not cause ice dams. However, gutters do help concentrate ice and water at a very vulnerable roof-eaves area. As gutters fill with ice, they often bend and rip away from the house bringing fascia, fasteners and downspouts in tow.
And what about those heat tapes? In my entire life, I have never seen a zig-zag arrangement of electrically-heated cable work to fix an ice dam problem. The cable is heated by electric power, so you throw good energy after bad energy (keep in mind that ice dams are a heat-loss problem!). Over time heat tape embrittles shingles, creates a fire risk, are expensive to install and use, and leak water through loose fasteners. In fact take a good look at roofs that are equipped with heat tape. The electric cable creates an ice dam just above it. My advice is don’t waste your time or money here.
Different styles of shoveling snow and chipping ice from the edge of a roof is my favorite of all solutions! People attack mounds of snow and roof ice with hammers, shovels, ice picks, home-made snow rakes, crow bars and CHAIN SAWS! Can you believe it? The theory is obvious: no snow or ice, no leaking water. BUT, and it is a big but, more damage is done to life, limb and roof in the process. Having said that, carefully removing snow from roofs with roof snow rakes does help. You can scrape some of the protective mineral surface from asphalt shingles as you remove snow, but removing the insulating snow and potential meltwater does help reduce ice dam potential – just be careful.
Whatever plan you decide to follow, focus on the cause. Ice dams are created by the heat lost from the house. Develop a strategy that is centered around this fact whenever possible. Ventilate, insulate well and block as many air leaks as practical. There are no excuses for new construction. However, cures for existing structures are often elusive and expensive. In some cases you have to treat the symptom. The payback is damage prevented.Top of Form
Source:
https://bct.eco.umass.edu/publications/articles/preventing-ice-dams/
If you are experiencing issues with ice dams, be sure to call us.
Comments
Ice Dams — No Comments
HTML tags allowed in your comment: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>